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A iew Type of Vector Field

and Invariant Dtfferertial Systems

by

H. H. Johnson*

In (1] Robert liermann introduced the concept of tangent

vector fields on the space of maps of ore manifold into

another. A special type of these are the "k-vector fiolds"

which were studied in (] , where this i.uthor defined their
bracket ad exponential. This paper explores furte.er the

analogy with classical continuous groips. Srecifically, we
study invariance of systems of partit.1 differertial equetions

under k-vector fields.

1. Introduction

Every map and manifold is CO unlesa otherwise noted.
j a Jk(19N) Is the manifold of k-jets JM(f) of order k

of maps f:N-#. from the manifold N to the manifold M

ot and a are the source and target projections,

J. .-D J the usual projection. T(M) denotes ;.he tangent

bundle to M p N the tangent space at y& M . iT the
y

tangent bundle projection. CO(Q) is the algebra (over

tne reals R ) of Ca real-valued functions on tre
manifold Q

A k-voctor field io a map *:Cao (M) -0 Coo (Jk) which

Is linear over R and satisfies

O(F*) a (Fop),(G) + (G.r)O(F)

In (3J the iat prolongation P GCO (Ji) - C (Ji-k)
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was defined. hise zatisfiem Pt10(10) a (Fopi I)PIO(G) +

(0o04+t)Pt0(F) I ard when He C' (N), P10(Hoo) a *(H)o4*i

Using these facts one seem that if 0 and a are k- and

i- vector fields, respectively, t!.en [0, 3 * P1es 1 -

Pk i oe in a kei- vector field.

In local coordinttes (xi) on N , (y) on N,

(x ieY xP' O ' pvo je pk , where i, J19 "... Sk

1, ... , n; A a 1, w.., m , ye follow Kuranist.i in defining

for each FPC&(Jk) , •#FE Ce(Jk4I) by

#a
F IF + P + +j xi ay x j • •PA Vjl"'Oikj"

1"" ";Jk

Then if 0 a aX(A/byA) is a k-vector field,

•lo+ 6#-- + + ... L.• .. •

p i g - a i Y A 
t ý ý

a ~i JP +~ ... +l J

$Let 3, Lemoa 1.j de shall also need the followiror Lemma

wnose proof we omit.

Leoans 1. 49_ be a k-veetar field, Fl* 1 P C• (iJ)t

GEC• (N() un F C' (Ji'J) . ha Ore .

(A) P I (FOPI J) a P- jew 1,J,,0 k
" o~ tt-k(.+) plo(Qo•) -U •o,÷

(C) 10(12) * (F opi÷k),IO*( )+ (T of )PiO(* ,

(D) P"O(b# 00a/ Goer) * 0' 0(0) 4k r
Ji.LjrW hr 3  .Ir 01r+ij , r<

(a) 1i@( b I 1104 (a 1211 P 1ije(p))* t+k
J1  Jr Jri4 iU1  Jr I-Je~ker

r<j.

Conversely, iq OuC"(J 1 ) I Co(J -k) satisfies (A)#...,



(E)w . Po iA elacedL 0, UM OP - .

Another important property for us to that if Ff CO(J 1 ) ,

f:h -K n 0 thee .( /bi 1  (( * (JR)(ilIDnt
L2, Prop. 1.1o0 3

Let Is(-te. ) . An gruL ve of 9 starting

at fo : -0, N is a I-paremeter family ftNxI -- M N with

fo(Z) a f(xO) and

*(;J (t)) -*•(z,t) •

Here (bf/bt)(xt)e Mf(Zxt) is defined to act on any real-

valued function P defined in a neighborhood of f(xot)

by dl(f(xt))/dt

2. Differential Systems

A s8stem Z. of partial differential equations

(s.p.d.e.) of order h with I as independent and N

as dependent variales la a finitely generated ideal in

Cso(Jh) . A solution of F is a map f:M• -p X such

that F(j (f)) =0 for all xRt EE P k.
xdenotes the a.p.d.e. of order ht-k generated by the

functions F 4 r , ... , "" F
l&J , jt. , F,•"

Definition. A k-vector field S leaves E invariant
if for each PCE . phg()•)1 k•

Compare with [2] for the older theory. The

intuitive meaning of invariance under a transformation

groupo was that the transformations permute the solutions.

We shall show that if fo is a solution of Z which

belongs to an integral curve of 0 j then r evaluated

at this Integral curvo has zero derivatives at f of all



4.

orders,

Leama 2. U 0 to an invariLnt vector field o .
Mon 0 ia an invariant vector field fo P - , &II

Tnis follows from (D) and (9) in Lemma 1. Jsing

local coordiný tes, a calculation proves

Lemma 3. IL FfC"(J 1 ) C f:N*I -OM , and
(bf/at) Z G(jk(f)) ,the_.n

x

Lama 4. If f:N -*K is a solution f ,na solutionnpf al•. 1..

Theorem. 1. uppose that

(A) 0 to nvarnyint k-vector fied o••
(B) f:VxI --p M qatlariu (af/bt) a Q(JF(r)) UW
(C) f( ,O):N -IM t in am•uIna -.

a0,tn° ',x to

for all x* N ; Pt r and n 1,2,....

Prooft From Lomma 3,

x 3'() k~hM
ix Ct)

However, zP%(,)6IkEP' P '-.d f is a solution of OrJ
bY Lema 4. i:once Pq(F)(jk*l(f)1, a 0 * &1l '4SP()(X•)|m 0e••I•



Let P Ish(F) E k .. By Loma 3,

P1111-P 'Vlj*1() M 5

Using Lemma 4 as before, (h 2 /at 2 )1(Jk(f)) , *O a 0

Continuing in th:is way, the result follows. Q.E.D.

When the mar-ifolds and functions are real aralytsil

Theorem 1 implies that integral curves of an invariant

vector field whion pass through one solution yield solutions

for all parameter values.

3. Lie Algebra Structure

Proposition, W 0 M4A g am kL-od h-vector
fielda. 1"ashestively.. Thou

•l~o. 1,]- ht÷ 1i , - i÷ •ok
PI~~~ ~ ~ [g %+qj1 4 Aopl

Proof. By Induction on I ° A local coordinate
calculation shovs the result for I a 1 * Call 0:
CO(J 1 ) -P (i ) the operator on .he right-hand

side. We shall use Lemma 1. Let P3. F24C'• (Ji)t G)9
•°°(N) , and weCOO(JIhh) .

* (•ik-hm1mS-i. 7 )(I)o k. ,
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applying Lemma I(A) to % and 0 , Interchanping 0 end

w we find

SFo~~j • r \ :luti~h~k-J

Now, oy induction, P 1'-J(F) a Pu-J[O, V, ]. ;:ence (A)

holds for 0 . The same technique works for (B),...,(E).

Q.E.D.

Theorem 2. LL 0 Wj V1 are m-A d b-vector fiekLfj

reeZectively, whic Lejv. yariant- the. i @ , (0

Proof. If ,"t c '- and E: is of order I , then
PIt ](F) a, Pi+hopI Sp (F) - Pi*k *, opig(F) . owever,

Pi L, (F)C PI .Ay Lemma 2 0. it an Invariant veeoer

field of P , so Ph÷oPi V,(F)t Ph+t . Similarly
Pi*ko oplo(F) ?b( k- . Q.k.D.

We conclude that the set of r.il k-vector fields,

k 1 1, 2, ... , leaving 1- invariart forms a Lie algebra

under t.e bracket.

4. An Example

Let N u En N N .ER Consider a s.p.d.e. of the

type

A A A- M 4

0 (x ,*...x ty I A

On J lt F PA 0 (x I~ ?ee)
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and let 2" be genereted 6y Fi . Fl , Then by a

calculation one may check that 0 a 0 A( /ay-) turns out

to be an invariant vector field of E .
We can see that 0 generates solutions of tre Cauchy

problem associated with - . Since 0 is irdeoende t of

xn and p v it can be considered a 1-vector field on
S Suppose fo :En -) E It the initial dpta ft

x na 0 , Suppose I " j xIt-Ec x"461 and f:En'•I -- '

za is an integral curve of 0 through f " But that is
merely another way of saying that f is a solution of -.
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